Tracks
/
Python
Python
/
Exercises
/
Complex Numbers
Complex Numbers

Complex Numbers

Medium

Instructions

A complex number is a number in the form a + b * i where a and b are real and i satisfies i^2 = -1.

a is called the real part and b is called the imaginary part of z. The conjugate of the number a + b * i is the number a - b * i. The absolute value of a complex number z = a + b * i is a real number |z| = sqrt(a^2 + b^2). The square of the absolute value |z|^2 is the result of multiplication of z by its complex conjugate.

The sum/difference of two complex numbers involves adding/subtracting their real and imaginary parts separately: (a + i * b) + (c + i * d) = (a + c) + (b + d) * i, (a + i * b) - (c + i * d) = (a - c) + (b - d) * i.

Multiplication result is by definition (a + i * b) * (c + i * d) = (a * c - b * d) + (b * c + a * d) * i.

The reciprocal of a non-zero complex number is 1 / (a + i * b) = a/(a^2 + b^2) - b/(a^2 + b^2) * i.

Dividing a complex number a + i * b by another c + i * d gives: (a + i * b) / (c + i * d) = (a * c + b * d)/(c^2 + d^2) + (b * c - a * d)/(c^2 + d^2) * i.

Raising e to a complex exponent can be expressed as e^(a + i * b) = e^a * e^(i * b), the last term of which is given by Euler's formula e^(i * b) = cos(b) + i * sin(b).

Implement the following operations:

  • addition, subtraction, multiplication and division of two complex numbers,
  • conjugate, absolute value, exponent of a given complex number.

Assume the programming language you are using does not have an implementation of complex numbers.

Building a Numeric Type

See Emulating numeric types for help on operator overloading and customization.


Source

WikipediaThe link opens in a new window or tab
Edit via GitHub The link opens in a new window or tab
Python Exercism

Ready to start Complex Numbers?

Sign up to Exercism to learn and master Python with 17 concepts, 140 exercises, and real human mentoring, all for free.