Julia

Join the Julia Track
Julia is an open-source high-level, dynamic programming language whose sweet spot is technical and scientific computing. It is convenient for day-to-day work and fast enough for high performance computing.

0 Mentors

Our mentors are friendly, experienced Julia developers who will help teach you new techniques and tricks.

127 Students

Join hundreds of students who have enjoyed learning and improving their skills by taking this track.

35 Exercises

Hundreds of hours have gone into making these exercises fun, useful, and challenging to help you enjoy learning.

About Julia

The creators of Julia want to eat their cake and have it too. As they describe in their blog post "Why We Created Julia" they want the speed of C, the dynamism of Ruby, the familiar mathematical notation of Matlab. They want it to be their favourite things from their favourite languages. String processing like Perl. Glue like the shell. Powerful but not impenetrably complex.

Julia has a powerful, yet clear and intuitive, dynamic type system. It allows writing dynamic code and specifying types if additional expressiveness is needed for simplification or performance increases. The language features multiple dispatch, meaning it chooses which method is called based on the types of each argument. This lets you write specific methods for certain types while providing generic fallbacks and is particularly useful for mathematical code, where it is not clear why an operation should belong to a specific argument.

Metaprogramming is easy in Julia due to its homoiconicity, i.e. Julia code can be represented in Julia itself, just like in Lisp. Large parts of Julia's base and standard library are also written in Julia. Understanding and changing it does not require knowledge of another language. If a library you need to use is written in another language, such as C, Fortran or Python, you can use simple interfaces to call them directly from your code.

Despite its young age, Julia is already being used in the real world in a variety of fields, such as but not limited to Finance, Data Science and Scientific Computing. You can find many showcase applications on juliabloggers.com and a list of publications about the language and its applications here.

Join the Julia track
function julia_set(z, c)
    n = 0
    while abs2(z) < 4
        z = z^2 + c
        n += 1
    end
    n
end

A tremendous learning opportunity to explore the depth of your own knowledge

Exercism is fantastic in learning new languages but that is not the extent of it. If you are a "more experienced" programmer you may have encountered impostor syndrome: the idea you don't really know what you think you know. Exercism lets you solve problems and put them in the space of open feedback which is a tremendous learning opportunity to explore the depth of your own knowledge. Even if you have been programming in a language for awhile it is worth checking into Exercism to see where you stand with current implementation practices.

Fun. Challenging. Interesting

Community-sourced Julia Exercises

These are a few of the 35 exercises on the Julia track. You can see all the exercises here.

Luhn
medium
easy
arithmetics
control flow conditionals
strings
Anagram
medium
easy
arrays
control flow loops
filtering
sorting
strings
Phone Number
medium
easy
conditionals
pattern matching
regular expressions
strings
Robot Name
medium
easy
randomness
strings
structs
Leap
medium
easy
arithmetics
control flow conditionals
integers
Secret Handshake
medium
easy
arrays
filtering
mathematics

Get started with the Julia track. As with everything on Exercism, it's 100% free!

Join the Julia Track