🎉 Exercism Research is now launched. Help Exercism, help science and have some fun at research.exercism.io 🎉
Avatar of angelikatyborska

angelikatyborska's solution

to All Your Base in the Elixir Track

Published at Nov 15 2018 · 0 comments
Instructions
Test suite
Solution

Note:

This exercise has changed since this solution was written.

Convert a number, represented as a sequence of digits in one base, to any other base.

Implement general base conversion. Given a number in base a, represented as a sequence of digits, convert it to base b.

Note

  • Try to implement the conversion yourself. Do not use something else to perform the conversion for you.

About Positional Notation

In positional notation, a number in base b can be understood as a linear combination of powers of b.

The number 42, in base 10, means:

(4 * 10^1) + (2 * 10^0)

The number 101010, in base 2, means:

(1 * 2^5) + (0 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (0 * 2^0)

The number 1120, in base 3, means:

(1 * 3^3) + (1 * 3^2) + (2 * 3^1) + (0 * 3^0)

I think you got the idea!

Yes. Those three numbers above are exactly the same. Congratulations!

Running tests

Execute the tests with:

$ elixir all_your_base_test.exs

Pending tests

In the test suites, all but the first test have been skipped.

Once you get a test passing, you can unskip the next one by commenting out the relevant @tag :pending with a # symbol.

For example:

# @tag :pending
test "shouting" do
  assert Bob.hey("WATCH OUT!") == "Whoa, chill out!"
end

Or, you can enable all the tests by commenting out the ExUnit.configure line in the test suite.

# ExUnit.configure exclude: :pending, trace: true

For more detailed information about the Elixir track, please see the help page.

Submitting Incomplete Solutions

It's possible to submit an incomplete solution so you can see how others have completed the exercise.

all-your-base-test.exs

if !System.get_env("EXERCISM_TEST_EXAMPLES") do
  Code.load_file("all-your-base.exs", __DIR__)
end

ExUnit.start()
ExUnit.configure(exclude: :pending, trace: true)

defmodule AllYourBaseTest do
  use ExUnit.Case

  test "convert single bit one to decimal" do
    assert AllYourBase.convert([1], 2, 10) == [1]
  end

  @tag :pending
  test "convert binary to single decimal" do
    assert AllYourBase.convert([1, 0, 1], 2, 10) == [5]
  end

  @tag :pending
  test "convert single decimal to binary" do
    assert AllYourBase.convert([5], 10, 2) == [1, 0, 1]
  end

  @tag :pending
  test "convert binary to multiple decimal" do
    assert AllYourBase.convert([1, 0, 1, 0, 1, 0], 2, 10) == [4, 2]
  end

  @tag :pending
  test "convert decimal to binary" do
    assert AllYourBase.convert([4, 2], 10, 2) == [1, 0, 1, 0, 1, 0]
  end

  @tag :pending
  test "convert trinary to hexadecimal" do
    assert AllYourBase.convert([1, 1, 2, 0], 3, 16) == [2, 10]
  end

  @tag :pending
  test "convert hexadecimal to trinary" do
    assert AllYourBase.convert([2, 10], 16, 3) == [1, 1, 2, 0]
  end

  @tag :pending
  test "convert 15-bit integer" do
    assert AllYourBase.convert([3, 46, 60], 97, 73) == [6, 10, 45]
  end

  @tag :pending
  test "convert empty list" do
    assert AllYourBase.convert([], 2, 10) == nil
  end

  @tag :pending
  test "convert single zero" do
    assert AllYourBase.convert([0], 10, 2) == [0]
  end

  @tag :pending
  test "convert multiple zeros" do
    assert AllYourBase.convert([0, 0, 0], 10, 2) == [0]
  end

  @tag :pending
  test "convert leading zeros" do
    assert AllYourBase.convert([0, 6, 0], 7, 10) == [4, 2]
  end

  @tag :pending
  test "convert negative digit" do
    assert AllYourBase.convert([1, -1, 1, 0, 1, 0], 2, 10) == nil
  end

  @tag :pending
  test "convert invalid positive digit" do
    assert AllYourBase.convert([1, 2, 1, 0, 1, 0], 2, 10) == nil
  end

  @tag :pending
  test "convert first base is one" do
    assert AllYourBase.convert([0], 1, 10) == nil
  end

  @tag :pending
  test "convert second base is one" do
    assert AllYourBase.convert([1, 0, 1, 0, 1, 0], 2, 1) == nil
  end

  @tag :pending
  test "convert first base is zero" do
    assert AllYourBase.convert([], 0, 10) == nil
  end

  @tag :pending
  test "convert second base is zero" do
    assert AllYourBase.convert([7], 10, 0) == nil
  end

  @tag :pending
  test "convert first base is negative" do
    assert AllYourBase.convert([1], -2, 10) == nil
  end

  @tag :pending
  test "convert second base is negative" do
    assert AllYourBase.convert([1], 2, -7) == nil
  end

  @tag :pending
  test "convert both bases are negative" do
    assert AllYourBase.convert([1], -2, -7) == nil
  end
end
defmodule AllYourBase do
  @min_base 2

  @doc """
  Given a number in base a, represented as a sequence of digits, converts it to base b,
  or returns nil if either of the bases are less than 2
  """

  @spec convert(list, integer, integer) :: list
  def convert(digits, base_a, base_b) do
    digits
    |> to_decimal(base_a)
    |> from_decimal(base_b)
  end

  defp to_decimal([], _), do: nil

  defp to_decimal(digits, base) do
    max_power = Enum.count(digits) - 1
    to_decimal(digits, base, max_power, 0)
  end

  defp to_decimal([], _, _, acc), do: acc
  defp to_decimal([digit | _], _, _, _) when digit < 0, do: nil
  defp to_decimal([digit | _], base, _, _) when digit >= base, do: nil
  defp to_decimal(_, base, _, _) when base < @min_base, do: nil

  defp to_decimal([digit | rest], base, power, acc) do
    to_decimal(rest, base, power - 1, acc + digit * trunc(:math.pow(base, power)))
  end

  defp from_decimal(nil, _), do: nil
  defp from_decimal(_, base) when base < @min_base, do: nil

  defp from_decimal(number, base, digits \\ [])
  defp from_decimal(0, _, []), do: [0]
  defp from_decimal(0, _, digits), do: digits
  defp from_decimal(number, base, digits) do
    digit = rem(number, base)
    rest = div(number, base)
    from_decimal(rest, base, [digit | digits])
  end
end

Community comments

Find this solution interesting? Ask the author a question to learn more.

What can you learn from this solution?

A huge amount can be learned from reading other people’s code. This is why we wanted to give exercism users the option of making their solutions public.

Here are some questions to help you reflect on this solution and learn the most from it.

  • What compromises have been made?
  • Are there new concepts here that you could read more about to improve your understanding?