🎉 Exercism Research is now launched. Help Exercism, help science and have some fun at research.exercism.io 🎉
Avatar of hoichi

hoichi's solution

to Custom Set in the OCaml Track

Published at Apr 05 2019 · 0 comments
Instructions
Test suite
Solution

Note:

This exercise has changed since this solution was written.

Create a custom set type.

Sometimes it is necessary to define a custom data structure of some type, like a set. In this exercise you will define your own set. How it works internally doesn't matter, as long as it behaves like a set of unique elements.

Getting Started

For installation and learning resources, refer to the exercism help page.

Installation

To work on the exercises, you will need Opam and Base. Consult opam website for instructions on how to install opam for your OS. Once opam is installed open a terminal window and run the following command to install base:

opam install base

To run the tests you will need OUnit. Install it using opam:

opam install ounit

Running Tests

A Makefile is provided with a default target to compile your solution and run the tests. At the command line, type:

make

Interactive Shell

utop is a command line program which allows you to run Ocaml code interactively. The easiest way to install it is via opam:

opam install utop

Consult utop for more detail.

Feedback, Issues, Pull Requests

The exercism/ocaml repository on GitHub is the home for all of the Ocaml exercises.

If you have feedback about an exercise, or want to help implementing a new one, head over there and create an issue. We'll do our best to help you!

Submitting Incomplete Solutions

It's possible to submit an incomplete solution so you can see how others have completed the exercise.

test.ml

open OUnit2

module type EXPECTED = sig
  type t
  val of_list : int list -> t
  val is_empty : t -> bool
  val is_member : t -> int -> bool
  val is_subset : t -> t -> bool
  val is_disjoint: t -> t -> bool
  val equal : t -> t -> bool
  val add : t -> int -> t
  val intersect : t -> t -> t
  val difference : t -> t -> t
  val union : t -> t -> t
end

module CSet : EXPECTED = Custom_set.Make(struct
  type t = int
  let compare a b = compare (a mod 10) (b mod 10)
end)

let assert_true exp _text_ctxt = assert_equal exp true
let assert_false exp _text_ctxt = assert_equal exp false
let tests = [
  "sets with no elements are empty">::
    assert_true (CSet.is_empty (CSet.of_list []));
  "sets with elements are not empty">::
    assert_false (CSet.is_empty (CSet.of_list [1]));
  "nothing is contained in the empty set">::
    assert_false (CSet.is_member (CSet.of_list []) 1);
  "when the element is in the set">::
    assert_true (CSet.is_member (CSet.of_list [1;2;3]) 1);
  "when the element is not in the set">::
    assert_false (CSet.is_member (CSet.of_list [1;3;3]) 4);
  "empty set is a subset of an other empty set">::
    assert_true (CSet.is_subset (CSet.of_list []) (CSet.of_list []));
  "empty set is a subset of a non empty set">::
    assert_true (CSet.is_subset (CSet.of_list []) (CSet.of_list [1]));
  "non-empty set is a not subset of an empty set">::
    assert_false (CSet.is_subset (CSet.of_list [1]) (CSet.of_list []));
  "set is a subset of set with exact same elements">::
    assert_true (CSet.is_subset (CSet.of_list [1;2;3]) (CSet.of_list [1;2;3]));
  "set is a subset of larger set with exact same elements">::
    assert_true (CSet.is_subset (CSet.of_list [1;2;3]) (CSet.of_list [4;1;2;3]));
  "set is not a subset of set that does not contain its elements">::
    assert_false (CSet.is_subset (CSet.of_list [1;2;3]) (CSet.of_list [4;1;3]));
  "the empty set is disjoint with itself">::
    assert_true (CSet.is_disjoint (CSet.of_list []) (CSet.of_list []));
  "the empty set is disjoint with non-empty set">::
    assert_true (CSet.is_disjoint (CSet.of_list []) (CSet.of_list [1]));
  "non-empty set is disjoint with empty set">::
    assert_true (CSet.is_disjoint (CSet.of_list [1]) (CSet.of_list []));
  "sets are not disjoint if they share an element">::
    assert_false (CSet.is_disjoint (CSet.of_list [1;2]) (CSet.of_list [2;3]));
  "sets are disjoint if they do not share an element">::
    assert_true (CSet.is_disjoint (CSet.of_list [1;2]) (CSet.of_list [3;4]));
  "empty sets are equal">::
    assert_true (CSet.equal (CSet.of_list []) (CSet.of_list []));
  "empty set is not equal to non-empty set">::
    assert_false (CSet.equal (CSet.of_list []) (CSet.of_list [1;2;3]));
  "non-empty set is not equal to empty set">::
    assert_false (CSet.equal (CSet.of_list [1;2;3]) (CSet.of_list []));
  "sets with the same elements are equal">::
    assert_true (CSet.equal (CSet.of_list [1;2]) (CSet.of_list [2;1]));
  "sets with different elements are not equal">::
    assert_false (CSet.equal (CSet.of_list [1;2;3]) (CSet.of_list [1;2;4]));
  "add to empty set">::
    assert_true (CSet.equal (CSet.of_list [3]) (CSet.add (CSet.of_list []) 3));
  "add to non-empty set">::
    assert_true (CSet.equal (CSet.of_list [1;2;3;4]) (CSet.add (CSet.of_list [1;2;4]) 3));
  "adding existing element does not change set">::
    assert_true (CSet.equal (CSet.of_list [1;2;3]) (CSet.add (CSet.of_list [1;2;3]) 3));
  "intersection of two empty sets is empty set">::
    assert_true (CSet.equal (CSet.of_list []) (CSet.intersect (CSet.of_list []) (CSet.of_list [])));
  "intersection of empty set with non-empty set is an empty set">::
    assert_true (CSet.equal (CSet.of_list []) (CSet.intersect (CSet.of_list []) (CSet.of_list [3;2;5])));
  "intersection of non-empty set with empty set is an empty set">::
    assert_true (CSet.equal (CSet.of_list []) (CSet.intersect (CSet.of_list [1;2;3;4]) (CSet.of_list [])));
  "intersection of sets with no shared elements is empty set">::
    assert_true (CSet.equal (CSet.of_list []) (CSet.intersect (CSet.of_list [1;2;3]) (CSet.of_list [4;5;6])));
  "intersection of set with shared elements is set of shared elements">::
    assert_true (CSet.equal (CSet.of_list [2;3]) (CSet.intersect (CSet.of_list [1;2;3;4]) (CSet.of_list [3;2;5])));
  "difference of two empty sets is an empty set">::
    assert_true (CSet.equal (CSet.of_list []) (CSet.difference (CSet.of_list []) (CSet.of_list [])));
  "difference of empty set and non-empty set is empty set">::
    assert_true (CSet.equal (CSet.of_list []) (CSet.difference (CSet.of_list []) (CSet.of_list [3;2;5])));
  "difference of non-empty set and empty set is the non-empty set">::
    assert_true (CSet.equal (CSet.of_list [1;2;3;4]) (CSet.difference (CSet.of_list [1;2;3;4]) (CSet.of_list [])));
  "difference of two non-empty sets is the sets of elements only in the first set">::
    assert_true (CSet.equal (CSet.of_list [1;3]) (CSet.difference (CSet.of_list [3;2;1]) (CSet.of_list [2;4])));
  "union of two empty sets is an empty set">::
    assert_true (CSet.equal (CSet.of_list []) (CSet.union (CSet.of_list []) (CSet.of_list [])));
  "union of empty set and non-empty set is non-empty set">::
    assert_true (CSet.equal (CSet.of_list [2]) (CSet.union (CSet.of_list []) (CSet.of_list [2])));
  "union of non-empty set and empty set is the non-empty set">::
    assert_true (CSet.equal (CSet.of_list [1;3]) (CSet.union (CSet.of_list [1;3]) (CSet.of_list [])));
  "union of two non-empty sets contains all unique elements">::
    assert_true (CSet.equal (CSet.of_list [1;2;3]) (CSet.union (CSet.of_list [1;3]) (CSet.of_list [2;3])));
  ]

let () =
  run_test_tt_main ("custom_set tests" >::: tests)
module type COMPARABLE = sig
  type t
  val compare : t -> t -> int
end

module type CUSTOM_SET = sig
  type elt
  type t

  val of_list : elt list -> t
  val is_empty : t -> bool
  val is_member : t -> elt -> bool
  val is_subset : t -> t -> bool
  val is_disjoint : t -> t -> bool
  val equal : t -> t -> bool
  val add : t -> elt -> t
  val intersect : t -> t -> t
  val difference : t -> t -> t
  val union : t -> t -> t
end

module Make(Ord : COMPARABLE)
  : (CUSTOM_SET with type elt = Ord.t) = struct
  open Base

  type elt = Ord.t
  type t = Empty | Node of { l: t; r: t; v: elt }


  (* HELPERS *)

  let cmp = Ord.compare

  let create l r v = Node { l; r; v; }

  let empty = Empty

  let new_node el = Node { l = Empty; r = Empty; v = el; }


  (*  Using CPS for tail optimization (using heap instead of stack).
      It’s not practical for the tests’ sizes, but what the heck.
      Also, I should get to grokking the deeper suff some day:
      https://stackoverflow.com/a/9323417/2658546
  *)
  let fold t ~f ~init =
    let rec fold_ ~t ~init cont =
      match t with
      | Empty -> cont init
      | Node {l; r; v} ->
        let seed = f init v in
        fold_ ~t:l ~init:seed (fun res_l ->
          fold_ ~t:r ~init:res_l cont
        )
    in fold_ ~t ~init Fn.id

  (* THE INTERFACE *)

  (* That is not a balanced tree, but it’s my first, so どうぞ よろしく *)
  let rec add s el =
    match s with
      | Empty -> new_node el
      | Node { l; r; v; } as t ->
        let c = cmp el v in
        if c < 0 then create (add l el) r v
        else if c > 0 then create l (add r el) v
        else t (* don’t add dupes to a set *)

  let of_list = List.fold ~init:empty ~f:add

  let is_empty = function
    | Empty -> true
    | _ -> false

  let rec is_member s el =
    match s with
    | Empty -> false
    | Node { l; r; v } ->
      let c = cmp el v in
      if c = 0 then true
      else if c < 0 then is_member l el
      else is_member r el

  let is_subset t1 t2 =
    fold t1 ~init:true ~f:(fun res el -> res && is_member t2 el)

  let is_disjoint t1 t2 =
    fold t1 ~init:true ~f:(fun res el -> res && not @@ is_member t2 el)

  let equal t1 t2 = is_subset t1 t2 && is_subset t2 t1
        
  let filter ~f:filter_f =
    fold ~init:empty ~f:(fun acc el ->
      if filter_f el then add acc el
      else acc
    )

  let intersect t1 = filter ~f:(is_member t1)

  let difference t1 t2 = filter t1 ~f:(Fn.non @@ is_member t2)

  let union t1 = fold ~init:t1 ~f:add
 end

Community comments

Find this solution interesting? Ask the author a question to learn more.

hoichi's Reflection

Did it with the basest, unbalanced tree. Also, most of the heavy lifting is done via the `fold` or `filter` helpers