🎉 Exercism Research is now launched. Help Exercism, help science and have some fun at research.exercism.io 🎉
Avatar of refacto

refacto's solution

to Nth Prime in the Lua Track

Published at Aug 24 2019 · 0 comments
Instructions
Test suite
Solution

Given a number n, determine what the nth prime is.

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

If your language provides methods in the standard library to deal with prime numbers, pretend they don't exist and implement them yourself.

Running the tests

To run the tests, run the command busted from within the exercise directory.

Further information

For more detailed information about the Lua track, including how to get help if you're having trouble, please visit the exercism.io Lua language page.

Source

A variation on Problem 7 at Project Euler http://projecteuler.net/problem=7

Submitting Incomplete Solutions

It's possible to submit an incomplete solution so you can see how others have completed the exercise.

nth-prime_spec.lua

local nth = require('nth-prime')

describe('nth-prime', function()
  local function benchmark(f)
    local start = os.clock()
    f()
    return os.clock() - start
  end

  it('should give 2 as the first prime', function()
    assert.equal(2, nth(1))
  end)

  it('should give 3 as the second prime', function()
    assert.equal(3, nth(2))
  end)

  it('should be able to calculate the nth prime for small n', function()
    assert.equal(13, nth(6))
  end)

  it('should be able to calculate the nth prime for large n', function()
    assert.equal(104743, nth(10001))
  end)

  it('should be efficient for large n', function()
    local execution_time = benchmark(function()
      nth(10001)
    end)

    assert(execution_time < 1, 'should take less than a second to execute')
  end)

  it('should raise an error for n <= 0', function()
    assert.has_error(function()
      nth(0)
    end)

    assert.has_error(function()
      nth(-1)
    end)
  end)
end)
local function is_prime(n)
   for i = 2, math.sqrt(n) do
     if n % i == 0 then
       return false
     end
   end
   return true
end

return function(n)
  assert(n > 0, "n must be positive")
  local cur_num = 1
  local i = 0
  while i < n do
    cur_num = cur_num + 1
    if is_prime(cur_num) then
      i = i + 1
    end
  end
  return cur_num
end

What can you learn from this solution?

A huge amount can be learned from reading other people’s code. This is why we wanted to give exercism users the option of making their solutions public.

Here are some questions to help you reflect on this solution and learn the most from it.

  • What compromises have been made?
  • Are there new concepts here that you could read more about to improve your understanding?