ðŸŽ‰ Exercism Research is now launched. Help Exercism, help science and have some fun at research.exercism.io ðŸŽ‰

Published at Feb 22 2021
·
0 comments

Instructions

Test suite

Solution

Given the size, return a square matrix of numbers in spiral order.

The matrix should be filled with natural numbers, starting from 1 in the top-left corner, increasing in an inward, clockwise spiral order, like these examples:

```
1 2 3
8 9 4
7 6 5
```

```
1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7
```

Reddit r/dailyprogrammer challenge #320 [Easy] Spiral Ascension. https://www.reddit.com/r/dailyprogrammer/comments/6i60lr/20170619_challenge_320_easy_spiral_ascension/

This exercise has been tested on Julia versions >=1.0.

It's possible to submit an incomplete solution so you can see how others have completed the exercise.

```
using Test
include("spiral-matrix.jl")
@testset "Different valid values" begin
@testset "Empty spiral" begin
@test spiral_matrix(0) == Matrix{Int}(undef,0,0)
end
@testset "Trivial spiral" begin
@test spiral_matrix(1) == reshape([1],(1,1))
end
@testset "Spiral of size 2" begin
@test spiral_matrix(2) == [1 2; 4 3]
end
@testset "Spiral of size 3" begin
@test spiral_matrix(3) == [1 2 3; 8 9 4; 7 6 5]
end
@testset "Spiral of size 4" begin
@test spiral_matrix(4) == [1 2 3 4; 12 13 14 5; 11 16 15 6; 10 9 8 7]
end
@testset "Spiral of size 5" begin
@test spiral_matrix(5) == [1 2 3 4 5; 16 17 18 19 6; 15 24 25 20 7; 14 23 22 21 8; 13 12 11 10 9]
end
end
```

```
@enum Orientation begin
right
left
up
down
end
struct Direction
orientaion
delta_i
delta_j
next_orientaion
end
const directions = Dict(right => Direction(right, 0, 1, down),
down => Direction(down, 1, 0, left),
left => Direction(left, 0, -1, up),
up => Direction(up, -1, 0, right),)
function spiral_matrix(n)
matrix = zeros(Int, (n, n))
(i, j) = (1, 1)
side_length = n
d = directions[right]
for k in 1:n * n
matrix[i, j] = k
final_index = d.delta_i + d.delta_j > 0 ? side_length : n + 1 - side_length
current_index = d.delta_i != 0 ? i : j
if current_index == final_index
d = directions[d.next_orientaion]
if d.orientaion == up
side_length -= 1
end
end
i += d.delta_i
j += d.delta_j
end
return matrix
end
```

A huge amount can be learned from reading other peopleâ€™s code. This is why we wanted to give exercism users the option of making their solutions public.

Here are some questions to help you reflect on this solution and learn the most from it.

- What compromises have been made?
- Are there new concepts here that you could read more about to improve your understanding?

Level up your programming skills with 3,450 exercises across 52 languages, and insightful discussion with our volunteer team of welcoming mentors.
Exercism is
**100% free forever**.

## Community comments