 artemkorsakov's solution

to Nth Prime in the Go Track

Published at Feb 26 2019 · 0 comments
Instructions
Test suite
Solution

Given a number n, determine what the nth prime is.

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

If your language provides methods in the standard library to deal with prime numbers, pretend they don't exist and implement them yourself.

Running the tests

To run the tests run the command go test from within the exercise directory.

If the test suite contains benchmarks, you can run these with the --bench and --benchmem flags:

go test -v --bench . --benchmem

Keep in mind that each reviewer will run benchmarks on a different machine, with different specs, so the results from these benchmark tests may vary.

Further information

For more detailed information about the Go track, including how to get help if you're having trouble, please visit the exercism.io Go language page.

Source

A variation on Problem 7 at Project Euler http://projecteuler.net/problem=7

Submitting Incomplete Solutions

It's possible to submit an incomplete solution so you can see how others have completed the exercise.

cases_test.go

package prime

// Source: exercism/problem-specifications
// Commit: 4a3ba76 nth-prime: Apply new "input" policy
// Problem Specifications Version: 2.1.0

var tests = []struct {
description string
n           int
p           int
ok          bool
}{
{
"first prime",
1,
2,
true,
},
{
"second prime",
2,
3,
true,
},
{
"sixth prime",
6,
13,
true,
},
{
"big prime",
10001,
104743,
true,
},
{
"there is no zeroth prime",
0,
0,
false,
},
}

nth_prime_test.go

package prime

import "testing"

func TestNth(t *testing.T) {
for _, test := range tests {
switch p, ok := Nth(test.n); {
case !ok:
if test.ok {
t.Fatalf("FAIL %s\nNth(%d) returned !ok.  Expecting ok.", test.description, test.n)
}
case !test.ok:
t.Fatalf("FAIL %s\nNth(%d) = %d, ok = %t.  Expecting !ok.", test.description, test.n, p, ok)
case p != test.p:
t.Fatalf("FAIL %s\nNth(%d) = %d, want %d.", test.description, test.n, p, test.p)
}
t.Logf("PASS %s", test.description)
}
}

func BenchmarkNth(b *testing.B) {
for i := 0; i < b.N; i++ {
Nth(10001)
}
}
package prime

// Nth returns the nth prime.
func Nth(n int) (int, bool) {
if n < 1 {
return 0, false
}

primes := make([]int, n)
primes = 2
for i := 1; i < n; i++ {
candidate := primes[i-1] + 1
for !IsPrime(candidate, primes) {
candidate++
}
primes[i] = candidate
}
return primes[len(primes)-1], true
}

// IsPrime determines whether the candidate is divisible by a list of prime numbers.
func IsPrime(candidate int, primes []int) bool {
for _, prime := range primes {
if prime > 1 && candidate%prime == 0 {
return false
}
}
return true
}