The creators of Julia want to eat their cake and have it too. As they describe in their blog post "Why We Created Julia" they want the speed of C, the dynamism of Ruby, the familiar mathematical notation of Matlab. They want it to be their favourite things from their favourite languages. String processing like Perl. Glue like the shell. Powerful but not impenetrably complex.

Julia has a dynamic, nominative and parametric type system. This allows writing dynamic code and specifying types if additional expressiveness is needed for simplification or performance increases. The language features multiple dispatch, meaning it chooses which method is called based on the types of each argument. This lets you write specific methods for certain types while providing generic fallbacks and is particularly useful for mathematical code, where it is not clear why an operation should belong to a specific argument.

Metaprogramming is easy in Julia due to its homoiconicity, i.e. Julia code can be represented in Julia itself. Large parts of Julia's base library are also written in Julia. Understanding and changing it does not require knowledge of another language. If a library you need to use is written in another language, such as C, Fortran or Python, you can use simple interfaces to call them directly from your code.

Despite its young age, Julia is already being used in the real world in a variety of fields, such as but not limited to Finance, Data Science and Scientific Computing. You can find many showcase applications on juliabloggers.com and a list of publications about the language and its technical computing applications here.


Help us explain this better! File a GitHub issue at https://github.com/exercism/julia/issues if you have suggestions, or submit a patch with improvements to the https://github.com/exercism/julia/blob/master/docs/ABOUT.md file.

Try It!

If you've downloaded the command-line client and have Julia installed on your machine, then go ahead and fetch the first problem.

1
exercism fetch julia

In order to be able to submit your solution, you'll need to configure the client with your Exercism API key.

1
exercism configure --key=YOUR_EXERCISM_KEY

When you've written a solution, submit it to the site. You'll have to configure the command-line client with your exercism API key before you can submit.

1
exercism submit PATH_TO_FILE