`1` ```exercism fetch python pythagorean-triplet ```

#### pythagorean_triplet_test.py

 ```1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98``` ```# # ============================================================================= # The test cases below assume two functions are defined: # # - triplets_in_range(min, max) # Compute all pythagorean triplets (a,b,c) with min <= a,b,c <= max # # - primitive_triplets(b) # Find all primitive pythagorean triplets having b as one of their # components # # Args: # b - an integer divisible by 4 (see explanantion below) # # Note that in the latter function the components other than the argument can # be quite large. # # A primitive pythagorean triplet has its 3 componentes coprime. So, (3,4,5) is # a primitive pythagorean triplet since 3,4 and 5 don't have a common factor. # On the other hand, (6,8,10), although a pythagorean triplet, is not primitive # since 2 divides all three components. # # A method for finding all primitive pythagorean triplet is given in wikipedia # (http://en.wikipedia.org/wiki/Pythagorean_triple#Generating_a_triple). The # triplet a=(m^2-n^2), b=2*m*n and c=(m^2+n^2), where m and n are coprime and # m-n>0 is odd, generate a primitive triplet. Note that this implies that b has # to be divisible by 4 and a and c are odd. Also note that we may have either # a>b or b>a. # # The function primitive_triplets should then use the formula above with b set # to its argument and find all possible pairs (m,n) such that m>n, m-n is odd, # b=2*m*n and m and n are coprime. # # ============================================================================= import unittest from pythagorean_triplet import ( primitive_triplets, triplets_in_range, is_triplet ) class PythagoreanTripletTest(unittest.TestCase): def test_triplet1(self): ans = set([(3, 4, 5)]) self.assertEqual(primitive_triplets(4), ans) def test_triplet2(self): ans = set([(13, 84, 85), (84, 187, 205), (84, 437, 445), (84, 1763, 1765)]) self.assertEqual(primitive_triplets(84), ans) def test_triplet3(self): ans = set([(29, 420, 421), (341, 420, 541), (420, 851, 949), (420, 1189, 1261), (420, 1739, 1789), (420, 4891, 4909), (420, 11021, 11029), (420, 44099, 44101)]) self.assertEqual(primitive_triplets(420), ans) def test_triplet4(self): ans = set([(175, 288, 337), (288, 20735, 20737)]) self.assertEqual(primitive_triplets(288), ans) def test_range1(self): ans = set([(3, 4, 5), (6, 8, 10)]) self.assertEqual(triplets_in_range(1, 10), ans) def test_range2(self): ans = set([(57, 76, 95), (60, 63, 87)]) self.assertEqual(triplets_in_range(56, 95), ans) def test_is_triplet1(self): self.assertIs(is_triplet((29, 20, 21)), True) def test_is_triplet2(self): self.assertIs(is_triplet((25, 25, 1225)), False) def test_is_triplet3(self): self.assertIs(is_triplet((924, 43, 925)), True) def test_odd_number(self): with self.assertRaisesWithMessage(ValueError): primitive_triplets(5) # Utility functions def setUp(self): try: self.assertRaisesRegex except AttributeError: self.assertRaisesRegex = self.assertRaisesRegexp def assertRaisesWithMessage(self, exception): return self.assertRaisesRegex(exception, r".+") if __name__ == '__main__': unittest.main() ```