Perfect Numbers in Python
Determine if a number is perfect, abundant, or deficient based on Nicomachus' (60  120 CE) classification scheme for natural numbers.
1  exercism fetch python perfectnumbers

Perfect Numbers
Determine if a number is perfect, abundant, or deficient based on Nicomachus' (60  120 CE) classification scheme for natural numbers.
The Greek mathematician Nicomachus devised a classification scheme for natural numbers, identifying each as belonging uniquely to the categories of perfect, abundant, or deficient based on their aliquot sum. The aliquot sum is defined as the sum of the factors of a number not including the number itself. For example, the aliquot sum of 15 is (1 + 3 + 5) = 9

Perfect: aliquot sum = number
 6 is a perfect number because (1 + 2 + 3) = 6
 28 is a perfect number because (1 + 2 + 4 + 7 + 14) = 28

Abundant: aliquot sum > number
 12 is an abundant number because (1 + 2 + 3 + 4 + 6) = 16
 24 is an abundant number because (1 + 2 + 3 + 4 + 6 + 8 + 12) = 36

Deficient: aliquot sum < number
 8 is a deficient number because (1 + 2 + 4) = 7
 Prime numbers are deficient
Implement a way to determine whether a given number is perfect. Depending on your language track, you may also need to implement a way to determine whether a given number is abundant or deficient.
Submitting Exercises
Note that, when trying to submit an exercise, make sure the solution is in the exercism/python/<exerciseName>
directory.
For example, if you're submitting bob.py
for the Bob exercise, the submit command would be something like exercism submit <path_to_exercism_dir>/python/bob/bob.py
.
For more detailed information about running tests, code style and linting, please see the help page.
Source
Taken from Chapter 2 of Functional Thinking by Neal Ford. http://shop.oreilly.com/product/0636920029687.do
Submitting Incomplete Solutions
It's possible to submit an incomplete solution so you can see how others have completed the exercise.